A Contact Binary Misclassified as an Ellipsoidal Variable: Complications for Detached Black Hole Searches

Author:

O’Doherty Tyrone N.ORCID,Bahramian ArashORCID,Goodwin Adelle J.ORCID,Miller-Jones James C. A.ORCID,Orosz Jerome A.ORCID,Strader JayORCID

Abstract

Abstract Identifying sources exhibiting ellipsoidal variability in large photometric surveys is becoming a promising method to search for candidate detached black holes (BHs) in binaries. This technique aims to exploit the orbital-phase-dependent modulation in optical photometry caused by the BH distorting the shape of the luminous star to constrain the mass ratio of the binary. Without understanding if, or how much, contamination is present in the candidate BH samples produced by this new technique it is hard to leverage them for BH discovery. Here, we follow up one of the best candidates identified from Gaia Data Release 3, Gaia DR3 4042390512917208960, with a radial velocity (RV) campaign. Combined photometric and RV modeling, along with spectral disentangling, suggests that the true mass ratio (the mass of the unseen object divided by the mass of the luminous star) is an order of magnitude smaller than that inferred assuming the modulations arise from ellipsoidal variability. We therefore infer that this system is likely a contact binary, or on the boundary of both stars nearly filling their Roche lobes; however, further observations are required to confidently detect the secondary. We find that the well-known problem of discriminating between ellipsoidal and contact binary light curves results in a larger contamination from contact binaries than previously suggested. Until ellipsoidal variables can be reliably distinguished from contact binaries, samples of BH candidates selected based on ellipsoidal variability are likely to be highly contaminated by contact binaries or similar systems.

Funder

Forrest Research Foundation

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3