Identifying Exoplanets with Deep Learning. IV. Removing Stellar Activity Signals from Radial Velocity Measurements Using Neural Networks

Author:

de Beurs Zoe. L.ORCID,Vanderburg AndrewORCID,Shallue Christopher J.ORCID,Dumusque XavierORCID,Cameron Andrew CollierORCID,Leet ChristopherORCID,Buchhave Lars A.ORCID,Cosentino RosarioORCID,Ghedina AdrianoORCID,Haywood Raphaëlle D.ORCID,Langellier NicholasORCID,Latham David W.ORCID,López-Morales MercedesORCID,Mayor MichelORCID,Micela GiusiORCID,Milbourne Timothy W.ORCID,Mortier AnneliesORCID,Molinari EmilioORCID,Pepe Francesco,Phillips David F.ORCID,Pinamonti MatteoORCID,Piotto GiampaoloORCID,Rice KenORCID,Sasselov DimitarORCID,Sozzetti AlessandroORCID,Udry StéphaneORCID,Watson Christopher A.

Abstract

Abstract Exoplanet detection with precise radial velocity (RV) observations is currently limited by spurious RV signals introduced by stellar activity. We show that machine-learning techniques such as linear regression and neural networks can effectively remove the activity signals (due to starspots/faculae) from RV observations. Previous efforts focused on carefully filtering out activity signals in time using modeling techniques like Gaussian process regression. Instead, we systematically remove activity signals using only changes to the average shape of spectral lines, and use no timing information. We trained our machine-learning models on both simulated data (generated with the SOAP 2.0 software) and observations of the Sun from the HARPS-N Solar Telescope. We find that these techniques can predict and remove stellar activity both from simulated data (improving RV scatter from 82 to 3 cm s−1) and from more than 600 real observations taken nearly daily over 3 yr with the HARPS-N Solar Telescope (improving the RV scatter from 1.753 to 1.039 m s−1, a factor of ∼1.7 improvement). In the future, these or similar techniques could remove activity signals from observations of stars outside our solar system and eventually help detect habitable-zone Earth-mass exoplanets around Sun-like stars.

Funder

TESS Guest Investigator Program, NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3