KIC 9028474: A Long-period Eclipsing Binary on a Highly Eccentric Orbit

Author:

Özdarcan OrkunORCID

Abstract

Abstract We present a comprehensive analysis of a very long-period (124.93669 days) eclipsing binary KIC 9028474, which is composed of F9V+G1V components on a highly eccentric (e = 0.82029) orbit. Masses and radii of the primary and the secondary components are M 1 = 1.18 ± 0.04 M , M 2 = 1.04 ± 0.03 M , R 1 = 1.52 ± 0.02 R , and R 2 = 1.11 ± 0.01 R , respectively. Eclipse time variations show the presence of apsidal motion, which in turn shows the existence of a third body in a relatively close orbit. Simultaneous analysis of infrared spectra and space photometry reveals that the primary component is about to leave the main sequence, indicating an age of 5.2 ± 0.8 Gyr for the system. Theoretical evaluation of the observed eccentricity indicates that the components of KIC 9028474 will end their whole life much before the orbital circularization is achieved. Given the limited resolution of the spectra, we can only place an upper limit on the rotational velocities of each star, thus a theoretical evaluation of the synchronization of the components.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3