Abstract
Abstract
Exploring planetary systems similar to our solar system can provide a means to explore a large range of possibly temperate climates on Earth-like worlds. Rather than run hundreds of simulations with different eccentricities at fixed obliquities, our variable-eccentricity approach provides a means to cover an incredibly large parameter space. Herein Jupiter’s orbital radius is moved substantially inward in two different scenarios, causing a forcing on Earth’s eccentricity. In one case, the eccentricity of Earth varies from 0 to 0.27 over ∼7000 yr for three different fixed obliquities (0°, 23°, and 45°). In another case, the eccentricity varies from 0 to 0.53 over ∼9400 yr in a single case with zero obliquity. In all cases, we find that the climate remains stable, but regional habitability changes through time in unique ways. At the same time, the moist greenhouse state is approached but only when at the highest eccentricities.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献