How Does Environment Affect the Morphology of Radio AGN?

Author:

Morris Melissa ElizabethORCID,Wilcots Eric,Hooper Eric,Heinz SebastianORCID

Abstract

Abstract Galaxies hosting Active Galactic Nuclei (AGN) with bent radio jets are used as tracers of dense environments, such as galaxy groups and clusters. The assumption behind using these jets is that they are bent under ram pressure from a dense, gaseous medium through which the host galaxy moves. However, there are many AGN in groups and clusters with jets that are not bent, which leads us to ask: why are some AGN jets affected so much by their environment while others are seemingly not? We present the results of an environmental study on a sample of 185 AGN with bent jets and 191 AGN with unbent jets in which we characterize their environments by searching for neighboring galaxies using a Friends-of-Friends algorithm. We find that AGN with bent jets are indeed more likely to reside in groups and clusters, while unbent AGN are more likely to exist in singles or pairs. When considering only AGN in groups of three or more galaxies, we find that bent AGN are more likely to exist in halos with more galaxies than unbent AGN. We also find that unbent AGN are more likely than bent AGN to be the brightest group galaxy. Additionally, groups hosting AGN with bent jets have a higher density of galaxies than groups hosting unbent AGN. Curiously, there is a population of AGN with bent jets that are in seemingly less dense regions of space, indicating they may be embedded in a cosmic web filament. Overall, our results indicate that bent doubles are more likely to exist in in larger, denser, and less relaxed environments than unbent doubles, potentially linking a galaxy’s radio morphology to its environment.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3