The Bombardment History of the Giant Planet Satellites

Author:

Bottke William F.ORCID,Vokrouhlický DavidORCID,Nesvorný DavidORCID,Marschall RaphaelORCID,Morbidelli Alessandro,Deienno RogerioORCID,Marchi SimoneORCID,Kirchoff MichelleORCID,Dones Luke,Levison Harold F.ORCID

Abstract

Abstract The origins of the giant planet satellites are debated, with scenarios including formation from a protoplanetary disk, sequential assembly from massive rings, and recent accretion after major satellite–satellite collisions. Here, we test their predictions by simulating outer solar system bombardment and calculating the oldest surface ages on each moon. Our crater production model assumes the projectiles originated from a massive primordial Kuiper Belt (PKB) that experienced substantial changes from collisional evolution, which transformed its size frequency distribution into a wavy shape, and Neptune’s outward migration, which ejected most PKB objects onto destabilized orbits. The latter event also triggered an instability among the giant planets some tens of Myr after the solar nebula dispersed. We find all giant planet satellites are missing their earliest crater histories, with the likely source being impact resetting events. Iapetus, Hyperion, Phoebe, and Oberon have surface ages that are a few Myr to a few tens of Myr younger than when Neptune entered the PKB (i.e., they are 4.52–4.53 Gyr old). The remaining midsized satellites of Saturn and Uranus, as well as the small satellites located between Saturn’s rings and Dione, have surfaces that are younger still by many tens to many hundreds of Myr (4.1–4.5 Gyr old). A much wider range of surface ages are found for the large moons Callisto, Ganymede, Titan, and Europa (4.1, 3.4, 1.8, and 0.18 Gyr old, respectively). At present, we favor the midsized and larger moons forming within protoplanetary disks, with the other scenarios having several challenges to overcome.

Funder

NASA ∣ SMD ∣ Planetary Science Division

Publisher

American Astronomical Society

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3