Precise Transit Photometry Using TESS. II. Revisiting 28 Additional Transiting Systems with Updated Physical Properties

Author:

Saha SumanORCID

Abstract

Abstract Precise physical properties of the known transiting exoplanets are essential for their precise atmospheric characterization using modern and upcoming instruments. Leveraging the large volume of high-signal-to-noise-ratio photometric follow-up data from TESS, highly precise physical properties can be estimated for these systems, especially for those discovered using ground-based instruments prior to the TESS mission. In this work, I have used the publicly available TESS follow-up data for 28 transiting systems with 10 < V mag < 10.5, with an aim to update their known physical properties. The observed lightcurves have been analyzed by implementing a state-of-the-art critical noise treatment algorithm to effectively reduce both time-correlated and uncorrelated noise components, using sophisticated techniques like wavelet denoising and Gaussian-process regression. Compared with the previous studies, the estimated transit parameters are found to be more precise for most of the targets, including a few cases where a larger space-based instrument like Spitzer, Kepler, or CHEOPS has been used in the previous study. The large volume of transit observations used for each target has also resulted in a more accurate estimation of the physical properties, as this overcomes any error in parameter estimations from bias present in a smaller volume of data. Thus, comparing with the literature values, statistically significant improvements in the known physical properties of several targeted systems have been reported from this work. The large volume of transit-timing information from the analyses was also used to search for transit-timing variation trends in these targets, which has resulted in no significant detection.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3