Dual-coding Contrastive Learning Based on the ConvNeXt and ViT Models for Morphological Classification of Galaxies in COSMOS-Web

Author:

Zhu ShiweiORCID,Fang GuanwenORCID,Zhou ChichunORCID,Song JieORCID,Lin ZesenORCID,Dai YaoORCID,Kong XuORCID

Abstract

Abstract In our previous works, we proposed a machine learning framework named USmorph for efficiently classifying galaxy morphology. In this study, we propose a self-supervised method called contrastive learning to upgrade the unsupervised machine learning (UML) part of the USmorph framework, aiming to improve the efficiency of feature extraction in this step. The upgraded UML method primarily consists of the following three aspects. (1) We employ a convolutional autoencoder to denoise galaxy images and adaptive polar coordinate transformation to enhance the model’s rotational invariance. (2) A pretrained dual-encoder convolutional neural network based on ConvNeXt and a vision transformer is used to encode the image data, while contrastive learning is then applied to reduce the dimension of the features. (3) We adopt a bagging-based clustering model to cluster galaxies with similar features into distinct groups. By carefully dividing the redshift bins, we apply this model to the rest-frame optical images of galaxies in the COSMOS-Web field within the redshift range of 0.5 < z < 6.0. Compared to the previous algorithm, the improved UML method successfully classifies 73% of galaxies. Using the GoogLeNet algorithm, we classify the morphology of the remaining 27% of galaxies. To validate the reliability of our updated algorithm, we compared our classification results with other galaxy morphological parameters and found a good consistency with galaxy evolution. Benefiting from its higher efficiency, this updated algorithm is well suited for application in future China Space Station Telescope missions.

Funder

MOST ∣ National Natural Science Foundation of China

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3