A Value-added COSMOS2020 Catalog of Physical Properties: Constraining Temperature-dependent Initial Mass Function

Author:

Rusakov VadimORCID,Steinhardt Charles L.ORCID,Sneppen AlbertORCID

Abstract

Abstract This work presents and releases a catalog of new photometrically derived physical properties for the ∼105 most well-measured galaxies in the COSMOS field on the sky. Using a recently developed technique, spectral energy distributions are modeled assuming a stellar initial mass function (IMF) that depends on the temperature of gas in star-forming regions. The method is applied to the largest current sample of high-quality panchromatic photometry, the COSMOS2020 catalog, that allows for testing this assumption. It is found that the galaxies exhibit a continuum of IMF and gas temperatures, most of which are bottom-lighter than measured in the Milky Way. As a consequence, the stellar masses and star formation rates of most galaxies here are found to be lower than those measured by traditional techniques in the COSMOS2020 catalog by factors of ∼1.6–3.5 and 2.5–70.0, respectively, with the change being the strongest for the most active galaxies. The resulting physical properties provide new insights into variation of the IMF-derived gas temperature along the star-forming main sequence and at quiescence, produce a sharp and coherent picture of downsizing, as seen from the stellar mass functions, and hint at a possible high-temperature and high-density stage of early galactic evolution.

Funder

Danmarks Grundforskningsfond

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Population synthesis of Be X-ray binaries: metallicity dependence of total X-ray outputs;Monthly Notices of the Royal Astronomical Society;2023-11-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3