Probing Dark Energy and Modifications of Gravity with Ground-based millimeter-wavelength Line Intensity Mapping

Author:

Moradinezhad Dizgah AzadehORCID,Bellini EmilioORCID,Keating Garrett K.ORCID

Abstract

Abstract Line intensity mapping (LIM) can provide a powerful means to constrain the theory of gravity and the nature of dark energy at low and high redshifts by mapping the large-scale structure over many redshift epochs. In this paper, we investigate the potential of the next generation ground-based millimeter-wavelength LIM surveys in constraining several models beyond ΛCDM, involving either a dynamic dark energy component or modifications of the theory of gravity. Limiting ourselves to two-point clustering statistics, we consider the measurements of auto-spectra of several CO rotational lines (from J = 2−1 to J = 6−5) and the [C ii] fine structure line in the redshift range of 0.25 < z < 12. We consider different models beyond ΛCDM, each one with different signatures and peculiarities. Among them, we focus on Jordan–Brans–Dicke and axion-driven early dark energy models as examples of well-studied scalar-tensor theories acting at late and early times, respectively. Additionally, we consider three phenomenological models based on an effective description of gravity at cosmological scales. We show that LIM surveys deployable within a decade (with ∼108 spectrometer hours) have the potential to improve upon the current bounds on all considered models significantly. The level of improvements range from a factor of a few to an order of magnitude.

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of astrophysical scatter on the epoch of reionization [H i]21 bispectrum;Journal of Cosmology and Astroparticle Physics;2024-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3