Modeling Kilonova Light Curves: Dependence on Nuclear Inputs

Author:

Zhu Y. L.ORCID,Lund K. A.ORCID,Barnes J.ORCID,Sprouse T. M.ORCID,Vassh N.ORCID,McLaughlin G. C.ORCID,Mumpower M. R.ORCID,Surman R.ORCID

Abstract

Abstract The mergers of binary neutron stars, as well as black hole–neutron star systems, are expected to produce an electromagnetic counterpart that can be analyzed to infer the element synthesis that occurred in these events. We investigate one source of uncertainties pertinent to lanthanide-rich outflows: the nuclear inputs to rapid neutron capture nucleosynthesis calculations. We begin by examining 32 different combinations of nuclear inputs: eight mass models, two types of spontaneous fission rates, and two types of fission daughter product distributions. We find that such nuclear physics uncertainties typically generate at least one order of magnitude uncertainty in key quantities such as the nuclear heating (one and a half orders of magnitude at 1 day post-merger), the bolometric luminosity (one order of magnitude at 5 days post-merger), and the inferred mass of material from the bolometric luminosity (factor of 8 when considering the 8–10 day region). Since particular nuclear processes are critical for determining the electromagnetic signal, we provide tables of key nuclei undergoing β-decay, α-decay, and spontaneous fission important for heating at different times, identifying decays that are common among the many nuclear input combinations.

Funder

Department of Energy

National Space and Aeronautics Administration

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3