Laboratory Detection of the Methoxymethyl Radical, CH3OCH2, Using Faraday Rotation and Chirped-pulse Techniques in the (Sub)millimeter Wave Range

Author:

Chahbazian RosemondeORCID,Martin-Drumel Marie-AlineORCID,Pirali OlivierORCID

Abstract

Abstract Modeling the abundance of interstellar complex organic molecules in space is a major challenge for astrophysicists. The relative roles of gas-phase and grain-surface processes in the formation and destruction of such large molecules remain unclear. Methyl formate (CH3OCHO, MF) and dimethyl ether (CH3OCH3, DME) species have been detected at relatively high abundances in both warm and cold objects of the interstellar medium (ISM), challenging an initial hypothesis favoring grain-surface processes for their formation. In this context, the methoxymethyl radical (CH3OCH2, RDME) has been proposed as a key species linking the abundances of MF and DME in the gas phase. Its detection may provide crucial information to disentangle and quantify the different processes involved in the formation and destruction of MF and DME. To support the search for RDME in space, we present the laboratory detection of its pure rotational spectrum in the vibronic ground state. Special care was taken to measure the frequencies of transitions expected to be intense under cold interstellar conditions. In total, we assigned and fitted 1007 transitions of the RDME with N and K a values up to 34 and 5, respectively. A reliable spectral catalog has been generated using the spectroscopic parameters derived from the fit and can be used confidently for future searches of the RDME radical in the ISM.

Funder

Laboratoire d'excellence Physique Atomes Lumière Matière

Agence Nationale de la Recherche

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3