LATIS: Constraints on the Galaxy–Halo Connection at z ∼ 2.5 from Galaxy–Galaxy and Galaxy–Lyα Clustering

Author:

Newman Andrew B.ORCID,Qezlou MahdiORCID,Chartab NimaORCID,Rudie Gwen C.ORCID,Blanc Guillermo A.ORCID,Bird SimeonORCID,Benson Andrew J.ORCID,Kelson Daniel D.ORCID,Lemaux Brian C.ORCID

Abstract

Abstract The connection between galaxies and dark matter halos is often quantified using the stellar mass–halo mass (SMHM) relation. Optical and near-infrared imaging surveys have led to a broadly consistent picture of the evolving SMHM relation based on measurements of galaxy abundances and angular correlation functions. Spectroscopic surveys at z ≳ 2 can also constrain the SMHM relation via the galaxy autocorrelation function and through the cross-correlation between galaxies and Lyα absorption measured in transverse sight lines; however, such studies are very few and have produced some unexpected or inconclusive results. We use ∼3000 spectra of z ∼ 2.5 galaxies from the Lyα Tomography IMACS Survey (LATIS) to measure the galaxy–galaxy and galaxy–Lyα correlation functions in four bins of stellar mass spanning 109.2M */M ≲ 1010.5. Parallel analyses of the MultiDark N-body and ASTRID hydrodynamic cosmological simulations allow us to model the correlation functions, estimate covariance matrices, and infer halo masses. We find that results of the two methods are mutually consistent and broadly accord with standard SMHM relations. This consistency demonstrates that we are able to measure and model Lyα transmission fluctuations δ F in LATIS accurately. We also show that the galaxy–Lyα cross-correlation, a free by-product of optical spectroscopic galaxy surveys at these redshifts, can constrain halo masses with similar precision to galaxy–galaxy clustering.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3