Abstract
Abstract
The low-luminosity active galactic nuclei M87, archetype of Fanaroff–Riley I radio galaxies, was observed in a historically quiet state in 2017. While one-zone leptonic jet models alone cannot explain the core radio-to-gamma-ray spectrum, we explore a hybrid jet-disk scenario. In this work, we model the overall spectral energy distribution of M87's core with a dominating one-zone lepto-hadronic jet component, coupled with the contribution from the accretion flow. We find close-to-equipartition parameter sets for which the jet component fits the radio-to-optical data as well as the gamma-ray band, while the accretion flow mainly contributes to the X-ray band. The effects of gamma-ray absorption by the extragalactic background light during the propagation toward Earth are probed and are found to be negligible for this model. The neutrino flux produced by such scenarios is also calculated, but remains below the current instruments’ sensitivity.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献