The Structure and Composition of Multiphase Galactic Winds in a Large Magellanic Cloud Mass Simulated Galaxy

Author:

Steinwandel Ulrich P.ORCID,Kim Chang-GooORCID,Bryan Greg L.ORCID,Ostriker Eve C.ORCID,Somerville Rachel S.ORCID,Fielding Drummond B.ORCID

Abstract

Abstract We present the first results from a high-resolution simulation with a focus on galactic wind driving for an isolated galaxy with a halo mass of ∼1011 M (similar to the Large Magellanic Cloud) and a total gas mass of ∼6 × 108 M , resulting in ∼108 gas cells at ∼4 M mass resolution. We adopt a resolved stellar feedback model with nonequilibrium cooling and heating, including photoelectric heating and photoionizing radiation, as well as supernovae, coupled to the second-order meshless finite-mass method for hydrodynamics. These features make this the largest resolved interstellar medium (ISM) galaxy model run to date. We find mean star formation rates around 0.05 M yr−1 and evaluate typical time-averaged loading factors for mass (η M ∼ 1.0, in good agreement with recent observations) and energy (η E ∼ 0.01). The bulk of the mass of the wind is transported by the warm (T < 5 × 105 K) phase, while there is a similar amount of energy transported in the warm and the hot phases (T > 5 × 105 K). We find an average opening angle of 30° for the wind, decreasing with higher altitude above the midplane. The wind mass loading is decreasing (flat) for the warm (hot) phase as a function of the star formation surface rate density ΣSFR, while the energy loading shows inverted trends with ΣSFR, decreasing for the warm wind and increasing for the hot wind, although with very shallow slopes. These scalings are in good agreement with previous simulations of resolved wind driving in the multiphase ISM.

Funder

BADW ∣ Leibniz-Rechenzentrum

Simons Foundation

NASA ATP Grant

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3