High-mass Star Formation in the Outer Scutum–Centaurus Arm

Author:

Armentrout W. P.ORCID,Anderson L. D.ORCID,Balser Dana S.ORCID,Bania T. M.,Dame T. M.ORCID,Wenger Trey V.ORCID

Abstract

Abstract The Outer Scutum–Centaurus (OSC) spiral arm is the most distant molecular spiral arm in the Milky Way, but until recently little was known about this structure. Discovered by Dame and Thaddeus, the OSC lies ∼15 kpc from the Galactic Center. Due to the Galactic warp, it rises to nearly 4° above the Galactic Plane in the first Galactic quadrant, leaving it unsampled by most Galactic plane surveys. Here we observe H ii region candidates spatially coincident with the OSC using the Very Large Array to image radio continuum emission from 65 targets and the Green Bank Telescope to search for ammonia and water maser emission from 75 targets. This sample, drawn from the Wide-field Infrared Survey Explorer Catalog of Galactic H ii Regions, represents every H ii region candidate near the longitude–latitude locus of the OSC. Coupled with their characteristic mid-infrared morphologies, detection of radio continuum emission strongly suggests that a target is a bona fide H ii region. Detections of associated ammonia or water maser emission allow us to derive a kinematic distance and determine if the velocity of the region is consistent with that of the OSC. Nearly 60% of the observed sources were detected in radio continuum, and more than 20% have ammonia or water maser detections. The velocities of these sources mainly place them beyond the Solar orbit. These very distant high-mass stars have stellar spectral types as early as O4. We associate high-mass star formation at 2 new locations with the OSC, increasing the total number of detected H ii regions in the OSC to 12.

Publisher

American Astronomical Society

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3