Abstract
Abstract
Among Type Ia supernova remnants (SNRs), Tycho’s SNR has been considered as a typical object from the viewpoints of its spectroscopic, morphological, and environmental properties. A recent reanalysis of Chandra data showed that its forward shock is experiencing a substantial deceleration since around 2007, which suggests recent shock interactions with a dense medium as a consequence of a cavity-wall environment inside a molecular cloud. Such a nonuniform environment can be linked back to the nature and activities of its progenitor. In this study, we perform hydrodynamic simulations to characterize Tycho’s cavity-wall environment using the latest multiepoch proper motion measurements of the forward shock. A range of parameters for the environment is explored in the hydrodynamic models to fit with the observational data for each azimuthal region. Our results show that a wind-like cavity with ρ(r) ∝ r
−2 reconciles with the latest data better than a uniform medium with a constant density. In addition, our best-fit model favors an anisotropic wind with an azimuthally varying wind parameter. The overall result indicates a mass-loss rate which is unusually high for the conventional single-degenerate explosion scenario.
Funder
MEXT ∣ Japan Society for the Promotion of Science
MEXT ∣ Japan Science and Technology Agency
Publisher
American Astronomical Society
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献