Abstract
Abstract
The question of whether cosmic microwave background (CMB) temperature and polarization data from Planck favor a spatially closed universe with curvature parameter Ω
K
< 0 has been the subject of recent intense discussions. Attempts to break the geometrical degeneracy combining Planck data with external data sets such as baryon acoustic oscillation (BAO) measurements all point toward a spatially flat universe at the cost of significant tensions with Planck, which makes the resulting data set combination problematic. Settling this issue requires identifying a data set that can break the geometrical degeneracy while avoiding these tensions. We argue that cosmic chronometers (CCs), measurements of the expansion rate H(z) from the relative ages of massive early-type passively evolving galaxies, are the data set we are after. Furthermore, CCs come with the additional advantage of being virtually free of cosmological model assumptions. Combining Planck 2018 CMB temperature and polarization data with the latest CCs, we break the geometrical degeneracy and find Ω
K
= −0.0054 ± 0.0055, consistent with a spatially flat universe and competitive with the Planck+BAO constraint. Our results are stable against minimal parameter space extensions and CC systematics, and we find no substantial tension between Planck and CC data within a nonflat universe, making the resulting combination reliable. Our results allow us to assert with confidence that the universe is spatially flat to the
level, a finding that might possibly settle the ongoing spatial curvature debate and lends even more support to the already very successful inflationary paradigm.
Funder
Isaac Newton Trust
Kavli Foundation
John Templeton Foundation
Gordon and Betty Moore Foundation
University of Cambridge ∣ Homerton College, University of Cambridge
Agenzia Spaziale Italiana
Publisher
American Astronomical Society
Cited by
169 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献