Radio Observations of Four Active Galactic Nuclei Hosting Intermediate-mass Black Hole Candidates: Studying the Outflow Activity and Evolution

Author:

Yang XiaolongORCID,Mohan PrashanthORCID,Yang JunORCID,Ho Luis C.ORCID,Aditya J. N. H. S.ORCID,Zhang ShaohuaORCID,Jaiswal SumitORCID,Yang XiaofengORCID

Abstract

Abstract Observational searches for intermediate-mass black holes (IMBHs; 102–106 M ) include relatively isolated dwarf galaxies. For those that host active galactic nuclei (AGNs), the IMBH nature may be discerned through the accretion–jet activity. We present radio observations of four AGN-hosting dwarf galaxies, which potentially harbor IMBHs. Very large array (VLA) observations indicate steep spectra (indices of −0.63 to −1.05) between 1.4 and 9 GHz. However, a comparison with the 9 GHz in-band spectral index shows a steepening for GH047 and GH158 (implying older/relic emission) and flattening for GH106 and GH163 (implying recent activity). Overlapping emission regions in the VLA 1.4 GHz and our very long baseline array (VLBA) 1.5 GHz observations, and possibly symmetric pc-scale extensions, are consistent with recent activity in the latter two. Using the compact VLBA radio luminosity, X-ray luminosity (probing the accretion activity), and the black hole masses, all AGNs are found to lie on the empirical fundamental plane relation. The four AGNs are radio-quiet with relatively higher Eddington ratios (0.04–0.32) and resemble X-ray binaries during spectral state transitions that entail an outflow ejection. Furthermore, the radio to X-ray luminosity ratio log R X of −3.9 to −5.6 in these four sources support the scenarios that include corona mass ejection from the accretion disk and wind activity. The growth to kpc-scales likely proceeds along a similar trajectory to young AGNs and peaked spectrum sources. These complex clues can thus aid in the detection and monitoring of IMBHs in the nearby universe.

Funder

Shanghai Sailing Program

China Postdoctoral Science Foundation

National Science Foundation of China

China Manned Space Project

MOST ∣ National Key Research and Development Program of China

CAS Pioneer Hundred Talents Program

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3