Evolution of the Angular Momentum of Molecular Cloud Cores in Magnetized Molecular Filaments

Author:

Misugi YoshiakiORCID,Inutsuka Shu-ichiroORCID,Arzoumanian DorisORCID,Tsukamoto YusukeORCID

Abstract

Abstract The angular momentum of molecular cloud cores plays a key role in the star formation process. However, the evolution of the angular momentum of molecular cloud cores formed in magnetized molecular filaments is still unclear. In this paper, we perform 3D magnetohydrodynamics simulations to reveal the effect of the magnetic field on the evolution of the angular momentum of molecular cloud cores formed through filament fragmentation. As a result, we find that the angular momentum decreases by 30% and 50% at the mass scale of 1 M in the case of weak and strong magnetic field, respectively. By analyzing the torques exerted on fluid elements, we identify the magnetic tension as the dominant process for angular momentum transfer for mass scales ≲3 M for the strong magnetic field case. This critical mass scale can be understood semianalytically as the timescale of magnetic braking. We show that the anisotropy of the angular momentum transfer due to the presence of a strong magnetic field changes the resultant angular momentum of the core only by a factor of 2. We also find that the distribution of the angle between the rotation axis and the magnetic field does not show strong alignment even just before the first core formation. Our results also indicate that the variety of the angular momentum of the cores is inherited from the difference in the phase of the initial turbulent velocity field. The variety could contribute to the diversity in size and other properties of protoplanetary disks recently reported by observations.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

American Astronomical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3