β-delayed Fission in r-process Nucleosynthesis

Author:

Mumpower M. R.ORCID,Kawano T.ORCID,Sprouse T. M.ORCID,Vassh N.ORCID,Holmbeck E. M.ORCID,Surman R.ORCID,Möller P.ORCID

Abstract

Abstract We present β-delayed neutron emission and β-delayed fission (βdf) calculations for heavy, neutron-rich nuclei using the coupled Quasi-Particle Random Phase Approximation plus Hauser-Feshbach (QRPA+HF) approach. From the initial population of a compound nucleus after β-decay, we follow the statistical decay, taking into account competition between neutrons, γ-rays, and fission. We find a region of the chart of nuclides where the probability of βdf is ∼100%, which likely prevents the production of superheavy elements in nature. For a subset of nuclei near the neutron dripline, neutron multiplicity and the probability of fission are both large, leading to the intriguing possibility of multi-chance βdf, a decay mode for extremely neutron-rich heavy nuclei. In this decay mode, β-decay can be followed by multiple neutron emission, leading to subsequent daughter generations that each have a probability to fission. We explore the impact of βdf in rapid neutron-capture process (r-process) nucleosynthesis in the tidal ejecta of a neutron star–neutron star merger and show that it is a key fission channel that shapes the final abundances near the second r-process peak.

Publisher

American Astronomical Society

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nuclear β-decay with statistical de-excitation;Atomic Data and Nuclear Data Tables;2025-06

2. Emulation of the calculations of final r-process abundance patterns with a neural network;Journal of Physics G: Nuclear and Particle Physics;2025-05-22

3. Motivations for early high-profile FRIB experiments;Journal of Physics G: Nuclear and Particle Physics;2025-05-06

4. A new measurement of 174Hf alpha decay;Nuclear Physics A;2025-01

5. α decay law of excited nuclei and its role in stellar decay rates;Physical Review C;2024-09-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3