Comets in Context: Comparing Comet Compositions with Protosolar Nebula Models

Author:

Willacy KarenORCID,Turner NealORCID,Bonev BonchoORCID,Gibb ErikaORCID,Dello Russo NeilORCID,DiSanti MichaelORCID,Vervack Jr. Ronald J.ORCID,Roth Nathan X.ORCID

Abstract

Abstract Comets provide a valuable window into the chemical and physical conditions at the time of their formation in the young solar system. We seek insights into where and when these objects formed by comparing the range of abundances observed for nine molecules and their average values across a sample of 29 comets to the predicted midplane ice abundances from models of the protosolar nebula. Our fiducial model, where ices are inherited from the interstellar medium, can account for the observed mixing ratio ranges of each molecule considered, but no single location or time reproduces the abundances of all molecules simultaneously. This suggests that each comet consists of material processed under a range of conditions. In contrast, a model where the initial composition of disk material is “reset,” wiping out any previous chemical history, cannot account for the complete range of abundances observed in comets. Using toy models that combine material processed under different thermal conditions, we find that a combination of warm (CO-poor) and cold (CO-rich) material is required to account for both the average properties of the Jupiter-family and Oort cloud comets, and the individual comets we consider. This could occur by the transport (either radial or vertical) of ice-coated dust grains in the early solar system. Comparison of the models to the average Jupiter-family and Oort cloud comet compositions suggests the two families formed in overlapping regions of the disk, in agreement with the findings of A’Hearn et al. and with the predictions of the Nice model.

Funder

NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3