3D-DASH: The Evolution of Size, Shape, and Intrinsic Scatter in Populations of Young and Old Quiescent Galaxies at 0.5 < z < 3

Author:

Clausen MaikeORCID,Whitaker Katherine E.ORCID,Momcheva IvelinaORCID,Cutler Sam E.ORCID,Suess Katherine A.ORCID,Weaver John R.ORCID,Miller TimORCID,van der Wel ArjenORCID,Wuyts StijnORCID,Wake DavidORCID,van Dokkum PieterORCID,Bezanson Rachel S.ORCID,Brammer GabrielORCID,Franx MarijnORCID,Nelson Erica J.ORCID,Förster Schreiber Natasha M.ORCID

Abstract

Abstract We present a study of the growth of the quiescent galaxy population between 0.5 < z < 3 by tracing the number density and structural evolution of a sample of 4518 old and 583 young quiescent galaxies with log(M /M ) > 10.4, selected from the COSMOS2020 catalog with complementary Hubble Space Telescope F160W imaging from the 3D-DASH survey. Among the quiescent population at z ∼ 2, roughly 50% are recently quenched galaxies; these young quiescent galaxies become increasingly rare toward lower redshift, supporting the idea that the peak epoch of massive galaxy quenching occurred at z > 2. Our data show that while the effective half-light radius of quiescent galaxies generally increases with time, young quiescent galaxies are significantly smaller than their older counterparts at the same redshift. In this work we investigate the connection between this size difference and other structural properties, including axis ratio, color gradients, stellar mass, and the intrinsic scatter in effective radius. We demonstrate that the size difference is driven by the most massive subpopulation (log(M /M ) > 11) and does not persist when restricting the sample to intermediate-mass galaxies (10.4 < log(M /M ) < 11). Interestingly, the intrinsic scatter in physical size shows a strong coevolution over the investigated time period and peaks around z ∼ 2 for both populations, only diverging at z < 1. Taken together, and assuming we are not missing a significant population of lower surface brightness galaxies, while the formation and quenching mechanisms that dominate at higher redshifts yield compact remnants, multiple evolutionary pathways may explain the diverse morphologies of galaxies that quench at z < 1.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3