Abstract
Abstract
To understand the mechanism behind high-z Lyα nebulae, we simulate the scattering of Lyα in a H i halo about a central Lyα source. For the first time, we consider both smooth and clumpy distributions of halo gas, as well as a range of outflow speeds, total H i column densities, H i spatial concentrations, and central source galaxies (e.g., with Lyα line widths corresponding to those typical of active galactic nucleus or star-forming galaxies). We compute the spatial-frequency diffusion and the polarization of the Lyα photons scattered by atomic hydrogen. Our scattering-only model reproduces the typical size of Lyα nebulae (∼100 kpc) at total column densities N
H I ≥ 1020 cm−2 and predicts a range of positive, flat, and negative polarization radial gradients. We also find two general classes of Lyα nebula morphologies: with and without bright cores. Cores are seen when N
H I is low, i.e., when the central source is directly visible, and are associated with a polarization jump, a steep increase in the polarization radial profile just outside the halo center. Of all the parameters tested in our smooth or clumpy medium model, N
H I dominates the trends. The radial behaviors of the Lyα surface brightness, spectral line shape, and polarization in the clumpy model with covering factor f
c
≳ 5 approach those of the smooth model at the same N
H I. A clumpy medium with high N
H I and low f
c
≲ 2 generates Lyα features via scattering that the smooth model cannot: a bright core, symmetric line profile, and polarization jump.
Funder
National Research Foundation of Korea
National Science Foundation
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献