Solar Chromospheric Heating by Magnetohydrodynamic Waves: Dependence on the Inclination of the Magnetic Field

Author:

Koyama Mayu,Shimizu ToshifumiORCID

Abstract

Abstract A proposed mechanism for solar chromospheric heating is magnetohydrodynamic waves propagating upward along magnetic field lines and dissipating their energy in the chromosphere. In particular, compressible magnetoacoustic waves may contribute to the heating. Theoretically, the components below the cutoff frequency cannot propagate into the chromosphere; however, the cutoff frequency depends on the inclination of the magnetic field lines. In this study, using high-temporal cadence spectral data of IRIS and Hinode Solar Optical Telescope spectropolarimeter in plages, we investigated the dependence of the low-frequency waves on magnetic field properties and quantitatively estimated the amount of energy dissipation in the chromosphere. The following results were obtained: (a) The amount of energy dissipated by the low-frequency component (3–6 mHz) increases with the inclination of the field below 40°, whereas it decreases as a function of the inclination of the field above 40°. (b) The amount of the energy is enhanced toward 104 W m−2, which is the energy required for heating in the chromospheric plage regions when the magnetic field is higher than 600 G and inclined more than 40°. (c) In the photosphere, the low-frequency component has much more power in the magnetic field inclined more and weaker than 400 G. The results suggest that the observed low-frequency components can bring the energy along the magnetic field lines and that only a specific range of the inclination angles of the field and the strength of the field may allow the low-frequency component to bring a sufficient amount of the energy into the chromosphere.

Funder

MEXT ∣ Japan Society for the Promotion of Science

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3