Ghostly Galaxies: Accretion-dominated Stellar Systems in Low-mass Dark Matter Halos

Author:

Wang Chung-WenORCID,Cooper Andrew P.ORCID,Bose SownakORCID,Frenk Carlos S.ORCID,Hellwing Wojciech A.ORCID

Abstract

Abstract Wide-area deep imaging surveys have discovered large numbers of extremely low surface brightness (LSB) dwarf galaxies, which challenge galaxy formation theory and, potentially, offer new constraints on the nature of dark matter. Here we discuss one as-yet-unexplored formation mechanism that may account for a fraction of LSB dwarfs. We call this the “ghost galaxy” scenario. In this scenario, inefficient radiative cooling prevents star formation in the “main branch” of the merger tree of a low-mass dark matter halo, such that almost all its stellar mass is acquired through mergers with less massive (but nevertheless star-forming) progenitors. Present-day systems formed in this way would be “ghostly” isolated stellar halos with no central galaxy. We use merger trees based on the extended Press–Schechter formalism and the Copernicus Complexio cosmological N-body simulation to demonstrate that mass assembly histories of this kind can occur for low-mass halos in ΛCDM, but they are rare. They are most probable in isolated halos of present-day mass ∼4 × 109 M , occurring for ∼5% of all halos of that mass under standard assumptions about the timing and effect of cosmic reionization. The stellar masses of star-forming progenitors in these systems are highly uncertain; abundance-matching arguments imply a bimodal present-day mass function having a brighter population (median M ∼ 3 × 106 M ) consistent with the tail of the observed luminosity function of ultradiffuse galaxies. This suggests that observable analogs of these systems may await discovery. We find that a stronger ionizing background (globally or locally) produces brighter and more extended ghost galaxies.

Funder

National Science and Technology Council

UK Research and Innovation

EC ∣ ERC ∣ HORIZON EUROPE European Research Council

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3