Spectral Properties of the Soft X-Ray Transient MAXI J0637−430 Using AstroSat

Author:

Thomas Neal TitusORCID,Gudennavar Shivappa B.ORCID,Misra RanjeevORCID,Bubbly S. G.ORCID

Abstract

Abstract Soft X-ray transients are systems that are detected when they go into an outburst, wherein their X-ray luminosity increases by several orders of magnitude. These outbursts are markers of the poorly understood change in the spectral state of these systems from the low/hard state to the high/soft state. We report the spectral properties of one such soft X-ray transient: MAXI J0637−430, with data from the SXT and LAXPC instruments on board the AstroSat mission. The source was observed for a total of ∼60 ks in two observations on 2019 November 8 and 21 soon after its discovery. Flux-resolved spectral analysis of the source indicates the presence of a multicolor blackbody component arising from the accretion disk and a thermal Comptonization component. The stable low temperature (∼0.55 keV) of the blackbody component points to a cool accretion disk with an inner disk radius of the order of a few hundred kilometers. In addition, we report the presence of a relativistically broadened Gaussian line at 6.4 keV. The disk-dominated flux and photon power-law index of ⪆2 and a constant inner disk radius indicate the source to be in the soft state. From the study we conclude that MAXI J0637−430 is a strong candidate for a black hole X-ray binary.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spectral and temporal features of GX 13+1 as revealed by AstroSat;Monthly Notices of the Royal Astronomical Society;2023-12-21

2. NuSTAR and AstroSat observations of GX 9+1: spectral and temporal studies;Monthly Notices of the Royal Astronomical Society;2023-08-03

3. The peculiar spectral evolution of the new X-ray transient MAXI J0637–430;Monthly Notices of the Royal Astronomical Society;2022-06-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3