Bright z ∼ 9 Galaxies in Parallel: The Bright End of the Rest-frame UV Luminosity Function from HST Parallel Programs

Author:

Bagley Micaela B.ORCID,Finkelstein Steven L.ORCID,Rojas-Ruiz SofíaORCID,Diekmann James,Finkelstein Keely D.ORCID,Song MimiORCID,Papovich CaseyORCID,Somerville Rachel S.ORCID,Baronchelli IvanoORCID,Dai 戴 Y. Sophia 昱ORCID

Abstract

Abstract The abundance of bright galaxies at z > 8 can provide key constraints on models of galaxy formation and evolution, as the predicted abundance varies greatly when different physical prescriptions for gas cooling and star formation are implemented. We present the results of a search for bright z ∼ 9–10 galaxies selected from pure parallel Hubble Space Telescope (HST) imaging programs. We include 132 fields observed as part of the Brightest of Reionizing Galaxies survey, the Hubble Infrared Pure Parallel Imaging Extragalactic Survey, and the WFC3 Infrared Spectroscopic Parallel survey. These observations cover a total of 620 arcmin2, about 70% of which is also covered with Spitzer Space Telescope infrared imaging. We identify 13 candidate galaxies in the range 8.3 < z < 11 with 24.5 < m H < 26.5 (−22.9 < M UV < −21.2), 11 of which constitute new discoveries. This sample capitalizes on the uncorrelated nature of pure parallel observations to overcome cosmic variance and leverages a full multiwavelength selection process to minimize contamination without sacrificing completeness. We perform detailed completeness and contamination analyses, and present measurements of the bright end of the UV luminosity function using a pseudobinning technique. We find a number density consistent with results from Finkelstein et al. and other searches in HST parallel fields. These bright candidates likely reside in overdensities, potentially representing some of the earliest sites of cosmic reionization. These new candidates are excellent targets for follow up with JWST, and four of them will be observed with the NIRSpec prism in Cycle 1.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3