Abstract
Abstract
We present an updated model for the extragalactic background light (EBL) from stars and dust, over wavelengths ≈0.1–1000 μm. This model uses accurate theoretical stellar spectra, and tracks the evolution of star formation, stellar mass density, metallicity, and interstellar dust extinction and emission in the universe with redshift. Dust emission components are treated self-consistently, with stellar light absorbed by dust reradiated in the infrared as three blackbody components. We fit our model, with free parameters associated with star formation rate and dust extinction and emission, to a wide variety of data: luminosity density, stellar mass density, and dust extinction data from galaxy surveys; and γ-ray absorption optical depth data from γ-ray telescopes. Our results strongly constraint the star formation rate density and dust photon escape fraction of the universe out to redshift z = 10, about 90% of the history of the universe. We find our model result is, in some cases, below lower limits on the z = 0 EBL intensity, and below some low-z
γ-ray absorption measurements.
Funder
National Aeronautics and Space Administration
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献