Abstract
Abstract
In this study we compute the equation of state and Rosseland mean opacity from temperatures of T ≃ 30,000 K down to T ≃ 400 K, pushing the capabilities of the ÆSOPUS code into the regime where solid grains can form. The GGchem code is used to solve the chemistry for temperatures less than ≃3000 K. Atoms, molecules, and dust grains in thermodynamic equilibrium are all included in the equation of state. To incorporate monochromatic atomic and molecular cross sections, an optimized opacity sampling technique is used. The Mie theory is employed to calculate the opacity of 43 grain species. Tables of Rosseland mean opacities for scaled-solar compositions are provided. Based on our computing resources, opacities for other chemical patterns, as well as various grain sizes, porosities, and shapes, can be easily computed upon user request to the corresponding author.
Funder
Italian Ministerial Grant
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献