An Iterative OLA Method for Inversion of Solar Spectropolarimetric Data. I. Single- and Multiple-variable Inversions of Thermodynamic Quantities

Author:

Agrawal PiyushORCID,Rast Mark P.ORCID,Cobo Basilio RuizORCID

Abstract

Abstract This paper describes an adaptation of the Optimally Localized Averaging (OLA) inversion technique, originally developed for geo- and helioseismological applications, to the interpretation of solar spectroscopic data. It focuses on inverting the thermodynamical properties of the solar atmosphere, assuming that the atmosphere and radiation field are in local thermodynamic equilibrium (LTE). We leave inversions of magnetic field and non-LTE inversions for future work. The advantage with the OLA method is that it computes solutions that are optimally depth resolved with minimal crosstalk error between variables. Additionally, the method allows for direct assessment of the vertical resolution of the inverted solutions. The primary challenges faced when adapting the method to spectroscopic inversions originate with the possible large-amplitude differences between the atmospheric model used to initiate the inversion and the underlying atmosphere it aims to recover, necessitating the development of an iterative scheme. Here, we describe the iterative OLA method we have developed for both single and multivariable inversions and demonstrate its performance on simulated data and synthesized spectra. We note that, when carrying out multivariable inversions, employing response function amplification factors can address the inherent spectral sensitivity bias that makes it hard to invert for less spectrally sensitive variables. The OLA method can, in most cases, reliably invert as well as or better than the frequently employed Stokes Inversion based on Response functions (SIR) scheme, but some difficulties remain. In particular, the method struggles to recover large-scale offsets in the atmospheric stratification. We propose future strategies to improve this aspect.

Funder

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3