Massive Debris Disks May Hinder Secular Stirring by Planetary Companions: An Analytic Proof of Concept

Author:

Sefilian Antranik A.ORCID

Abstract

Abstract Debris disks or exo-Kuiper belts, detected through their thermal or scattered emission from their dusty components, are ubiquitous around main-sequence stars. Since dust grains are short-lived, their sustained presence is thought to require dynamical excitation, i.e., “stirring,” of a massive reservoir of large planetesimals, such that mutual collisions are violent enough to continually supply fresh dust. Several mechanisms have been proposed to explain debris disk stirring, with the commonly accepted being long-term, secular planet–debris disk interactions. However, while effective, existing planet-stirring models are rudimentary; namely, they ignore the (self-)gravity of the disk, treating it as a massless reservoir of planetesimals. Here, using a simple analytical model, we investigate the secular interactions between eccentric planets and massive, external debris disks. We demonstrate that the disk gravity drives fast apsidal precession of both planetesimal and planetary orbits, which, depending on the system parameters, may well exceed the planet-induced precession rate of planetesimals. This results in strong suppression of planetesimal eccentricities and thus relative collisional velocities throughout the disk, often by more than an order of magnitude when compared to massless disk models. We thus show that massive debris disks may hinder secular stirring by eccentric planets orbiting near, e.g., the disk’s inner edge, provided the disk is more massive than the planet. We provide simple analytic formulae to describe these effects. Finally, we show that these findings have important implications for planet inferences in debris-bearing systems, as well as for constraining the total masses of debris disks (as done for β Pic).

Funder

Alexander von Humboldt-Stiftung

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3