Assessing the Performance of the ADAPT and AFT Flux Transport Models Using In Situ Measurements from Multiple Satellites

Author:

Knizhnik Kalman J.ORCID,Weberg Micah J.ORCID,Provornikova ElenaORCID,Warren Harry P.ORCID,Linton Mark G.ORCID,Shaik Shaheda BegumORCID,Ko Yuan-KuenORCID,Schonfeld Samuel J.ORCID,Ugarte-Urra IgnacioORCID,Upton Lisa A.ORCID

Abstract

Abstract The launches of Parker Solar Probe (Parker) and Solar Orbiter (SolO) are enabling a new era of solar wind studies that track the solar wind from its origin at the photosphere, through the corona, to multiple vantage points in the inner heliosphere. A key ingredient for these models is the input photospheric magnetic field map that provides the boundary condition for the coronal portion of many heliospheric models. In this paper, we perform steady-state, data-driven magnetohydrodynamic (MHD) simulations of the solar wind during Carrington rotation 2258 with the Grid GAMERA model. We use the ADAPT and AFT flux transport models and quantitatively assess how well each model matches in situ measurements from Parker, SolO, and Earth. We find that both models reproduce the magnetic field components at Parker quantitatively well. At SolO and Earth, the magnetic field is reproduced relatively well, though not as well as at Parker, and the density is reproduced extremely poorly. The velocity is overpredicted at Parker, but not at SolO or Earth, hinting that the Wang–Sheeley–Arge (WSA) relation, fine-tuned for Earth, misses the deceleration of the solar wind near the Sun. We conclude that AFT performs quantitatively similarly to ADAPT in all cases, and that both models are comparable to a purely WSA heliospheric treatment with no MHD component. Finally, we trace field lines from SolO back to an active region outflow that was observed by Hinode/EIS, and which shows evidence of elevated charge state ratios.

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3