Detection of Gravity Modes in RR Lyrae Stars

Author:

Chadid MeriemeORCID

Abstract

Abstract We report the detection of gravity modes in RR Lyrae stars. Thanks to Photometer AntarctIca eXtinction (PAIX), the first Antarctic polar photometer. Unprecedented and uninterrupted UBVRI time-series photometric ground-based data are collected during 150 days from the highest plateau of Antarctica. PAIX light-curve analyses reveal an even richer power spectrum with mixed modes in RR Lyrae stars. The nonlinear nature of several dominant peaks, showing lower and higher frequencies, occurs around the dominant fundamental radial pressure mode. These lower frequencies and harmonics linearly interact with the dominant fundamental radial pressure mode and its second and third overtone pressure modes, as well. Half-integer frequencies are also detected, likewise side-peak structures, demonstrating that HH Puppis is a bona-fide Blazhko star. Fourier correlations are used to derive underlying physical characteristics for HH Puppis. The most striking finding is the direct detection of gravity waves. We interpret the excitation mechanism of gravity waves in RR Lyrae stars by the penetrative convection-driving mechanism. We demonstrate that RR Lyrae stars’ pulsation is excited by several distinct mechanisms, and hence RR Lyrae stars are simultaneously g-mode and p-mode pulsators. Our discoveries make RR Lyrae stars very challenging stellar objects, and provide their potential to undergo at the same time g and p modes toward an advancement of the theory of stellar evolution and a better understanding of the universe.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Van Hoof Effect over the Blazhko Cycle;The Astrophysical Journal;2023-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3