Modeling the Hα and He 10830 Transmission Spectrum of WASP-52b

Author:

Yan DongdongORCID,Seon Kwang-ilORCID,Guo JianhengORCID,Chen GuoORCID,Li Lifang

Abstract

Abstract Escaping atmosphere has been detected by the excess absorption of Lyα, Hα and He triplet (λ10830) lines. Simultaneously modeling the absorption of the Hα and He λ10830 lines can provide useful constraints about the exoplanetary atmosphere. In this paper, we use a hydrodynamic model combined with a non−local thermodynamic model and a new Monte Carlo simulation model to obtain the H(2) and He(23 S) populations. The Monte Carlo simulations of Lyα radiative transfer are performed with assumptions of a spherical stellar Lyα radiation and a spherical planetary atmosphere, for the first time, to calculate the Lyα mean intensity distribution inside the planetary atmosphere, necessary in estimating the H(2) population. We model the transmission spectra of the Hα and He λ10830 lines simultaneously in hot Jupiter WASP-52b. We find that models with many different H/He ratios can reproduce the Hα observations well if the host star has (1) a high X-ray and extreme-ultraviolet (XUV) flux (F XUV) and a relatively low X-ray fraction in XUV radiation (β m ) or (2) a low F XUV and a high β m . The simulations of the He λ10830 triplet suggest that a high H/He ratio (∼98/2) is required to fit the observation. The models that fit both lines well confine F XUV to be about 0.5 times the fiducial value and β m to have a value around 0.3. The models also suggest that hydrogen and helium originate from the escaping atmosphere, and the mass-loss rate is about 2.8 × 1011 g s−1.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3