The Impact-driven Atmospheric Loss of Super-Earths around Different Spectral Types of Host Stars

Author:

Zhong WeiORCID,Yu CongORCID,Jia ShiORCID,Liu Shang-FeiORCID

Abstract

Abstract A planet’s mass loss is important for the its formation and evolution. The radius valley (RV) is believed to be triggered by evaporation-induced mass loss. As an alternative mechanism for RV, the mass loss of post-impact planets is thoroughly investigated in this work. The impact energy is converted to the planet’s internal energy, enhancing its core energy and accelerating mass loss and orbital migration. As the host star changes from K type to F type, the planet’s mass loss and orbital migration increase. When the initial gas-to-core-mass ratio is small, the migration efficiency for planets around K-type stars will increase, which helps to suppress mass loss and retain the planet’s mass and radius within a specific range. On the contrary, planets around more massive F-type stars experience more substantial mass loss, potentially leading to complete mass loss, and migrate to orbits with longer periods. Our calculation shows that planets around different spectral types of host stars give rise to an RV ranging from 1.3 to 2.0 R , consistent with the observed range of 1.3–2.6 R . Despite the presence of uncertain parameters, the planetesimal impact can promote the RV establishment for planets around host stars of different spectral types.

Funder

National Key R&D Program of China

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3