Constraining Cluster Virialization Mechanism and Cosmology Using Thermal-SZ-selected Clusters from Future CMB Surveys

Author:

Raghunathan SrinivasanORCID,Whitehorn NathanORCID,Alvarez Marcelo A.ORCID,Aung HanORCID,Battaglia NicholasORCID,Holder Gilbert P.ORCID,Nagai DaisukeORCID,Pierpaoli ElenaORCID,Reichardt Christian L.ORCID,Vieira Joaquin D.ORCID

Abstract

Abstract We forecast the number of galaxy clusters that can be detected via the thermal Sunyaev–Zel’dovich (tSZ) signals by future cosmic microwave background (CMB) experiments, primarily the wide area survey of the CMB-S4 experiment but also CMB-S4's smaller de-lensing survey and the proposed CMB-HD experiment. We predict that CMB-S4 will detect 75,000 clusters with its wide survey of f sky = 50% and 14,000 clusters with its deep survey of f sky = 3%. Of these, approximately 1350 clusters will be at z ≥ 2, a regime that is difficult to probe by optical or X-ray surveys. We assume CMB-HD will survey the same sky as the S4-Wide, and find that CMB-HD will detect three times more overall and an order of magnitude more z ≥ 2 clusters than CMB-S4. These results include galactic and extragalactic foregrounds along with atmospheric and instrumental noise. Using CMB-cluster lensing to calibrate the cluster tSZ–mass scaling relation, we combine cluster counts with primary CMB to obtain cosmological constraints for a two-parameter extension of the standard model (ΛCDM + ∑m ν + w 0). In addition to constraining σ(w 0) to ≲1%, we find that both surveys can enable a ∼2.5–4.5σ detection of ∑m ν , substantially strengthening CMB-only constraints. We also study the evolution of the intracluster medium by modeling the cluster virialization v(z) and find tight constraints from CMB-S4, with further factors of three to four improvement for CMB-HD.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3