Investigation of Phase Shift and Travel Time of Acoustic Waves in the Lower Solar Atmosphere Using Multiheight Velocities

Author:

Kumar HirdeshORCID,Kumar Brajesh,Mathew Shibu K.,Bayanna A. RajaORCID,Rajaguru S. P.ORCID

Abstract

Abstract We report and discuss the phase shift and phase travel time of low-frequency (ν < 5.0 mHz) acoustic waves estimated within the photosphere and photosphere–chromosphere interface regions, utilizing multiheight velocities in the quiet Sun. The bisector method has been employed to estimate seven height velocities in the photosphere within the Fe i 6173 Å line scan, while nine height velocities are estimated from the chromospheric Ca ii 8542 Å line scan observations obtained from the narrowband imager instrument installed on the Multi-Application Solar Telescope operational at the Udaipur Solar Observatory, India. Utilizing a fast Fourier transform at each pixel over the full field of view, phase shift and coherence have been estimated. The frequency and height-dependent phase shift integrated over the regions having an absolute line-of-sight magnetic field of less than 10 G indicates the nonevanescent nature of low-frequency acoustic waves within the photosphere and photosphere–chromosphere interface regions. Phase travel time estimated within the photosphere shows nonzero values, aligning with previous simulations and observations. Further, we report that the nonevanescent nature persists beyond the photosphere, encompassing the photospheric–chromospheric height range. We discuss possible factors contributing to the nonevanescent nature of low-frequency acoustic waves. Additionally, our observations reveal a downward propagation of high-frequency acoustic waves indicating refraction from higher layers in the solar atmosphere. This study contributes valuable insights into the understanding of the complex dynamics of acoustic waves within different lower solar atmospheric layers, shedding light on the nonevanescent nature and downward propagation of the acoustic waves.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3