Revisiting the Dust Torus Size–Luminosity Relation Based on a Uniform Reverberation-mapping Analysis

Author:

Mandal Amit KumarORCID,Woo Jong-HakORCID,Wang ShuORCID,Rakshit SuvenduORCID,Cho HojinORCID,Son DonghoonORCID,Stalin C. S.ORCID

Abstract

Abstract We investigate the torus size–luminosity relation of Type 1 active galactic nuclei (AGNs) based on the reverberation-mapping analysis using the light curves of the optical continuum and the IR continuum obtained with the W1 and W2 bands of the Wide-field Infrared Survey Explorer survey. The final sample consists of 446 and 416 AGNs, respectively, for W1- and W2-band light curves, covering a large dynamic range of bolometric luminosity from 1043.4 to 1047.6 erg s−1, which show reliable lag measurements based on our quality assessment analysis. After correcting for the accretion disk contamination in the observed IR flux, we constrain the torus size (R dust) and AGN bolometric luminosity (L bol) relationship with the best-fit slope of 0.39 (0.33) for the W1 (W2) band, which is shallower than expected from the dust radiation equilibrium model. By combining the previous K-band lag measurements, we find that the measured torus size depends on the observed wavelength of the dust radiation, as R dust,K : R dust,W1: R dust,W2 = 1.0:1.5:1.8 (R dustλ 0.80) at L bol = 1046 erg s−1, confirming a stratified structure of the torus, where wavelength-dependent emissions originate from distinct regions of the torus. By investigating the deviation from the best-fit torus size–luminosity relation, we find a moderate correlation between the offset from the R dustL bol relation and Eddington ratio. This suggests a possible influence of the Eddington ratio on the observed flattening of the R dustL bol relationship.

Funder

National Research Foundation of Korea

Samsung Science and Technology Foundation

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3