Formation of Unipolar Outflow and Protostellar Rocket Effect in Magnetized Turbulent Molecular Cloud Cores

Author:

Takaishi 髙石 Daisuke 大輔ORCID,Tsukamoto 塚本 Yusuke 裕介ORCID,Kido 城戸 Miyu 未宇ORCID,Takakuwa 髙桑 Shigehisa 繁久ORCID,Misugi 三杉 Yoshiaki 佳明ORCID,Kudoh 工藤 Yuki 祐己ORCID,Suto 須藤 Yasushi 靖ORCID

Abstract

Abstract Observed protostellar outflows exhibit a variety of asymmetrical features, including remarkable unipolar outflows and bending outflows. Revealing the formation and early evolution of such asymmetrical protostellar outflows, especially the unipolar outflows, is essential for a better understanding of the star and planet formation because they can dramatically change the mass accretion and angular momentum transport to the protostars and protoplanetary disks. Here we perform three-dimensional nonideal magnetohydrodynamics simulations to investigate the formation and early evolution of the asymmetrical protostellar outflows in magnetized turbulent isolated molecular cloud cores. We find, for the first time to our knowledge, that the unipolar outflow forms even in the single low-mass protostellar system. The results show that the unipolar outflow is driven in the weakly magnetized cloud cores with the dimensionless mass-to-flux ratios of μ = 8 and 16. Furthermore, we find the protostellar rocket effect of the unipolar outflow, which is similar to the launch and propulsion of a rocket. The unipolar outflow ejects the protostellar system from the central dense region to the outer region of the parent cloud core, and the ram pressure caused by its ejection suppresses the driving of additional new outflows. In contrast, the bending bipolar outflow is driven in the moderately magnetized cloud core with μ = 4. The ratio of the magnetic to turbulent energies of a parent cloud core may play a key role in the formation of asymmetrical protostellar outflows.

Publisher

American Astronomical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3