Abstract
Abstract
We present tomographic measurements of structure growth using cross-correlations of Atacama Cosmology Telescope (ACT) DR6 and Planck cosmic microwave background (CMB) lensing maps with the unWISE Blue and Green galaxy samples, which span the redshift ranges 0.2 ≲ z ≲ 1.1 and 0.3 ≲ z ≲ 1.8, respectively. We improve on prior unWISE cross-correlations not just by making use of the new, high-precision ACT DR6 lensing maps, but also by including additional spectroscopic data for redshift calibration and by analyzing our measurements with a more flexible theoretical model. We determine the amplitude of matter fluctuations at low redshifts (z ≃ 0.2–1.6), finding
S
8
≡
σ
8
(
Ω
m
/
0.3
)
0.5
=
0.813
±
0.021
using the ACT cross-correlation alone and S
8 = 0.810 ± 0.015 with a combination of Planck and ACT cross-correlations; these measurements are fully consistent with the predictions from primary CMB measurements assuming standard structure growth. The addition of baryon acoustic oscillation data breaks the degeneracy between σ
8 and Ω
m
, allowing us to measure σ
8 = 0.813 ± 0.020 from the cross-correlation of unWISE with ACT and σ
8 = 0.813 ± 0.015 from the combination of cross-correlations with ACT and Planck. These results also agree with the expectations from primary CMB extrapolations in ΛCDM cosmology; the consistency of σ
8 derived from our two redshift samples at z ∼ 0.6 and 1.1 provides a further check of our cosmological model. Our results suggest that structure formation on linear scales is well described by ΛCDM even down to low redshifts z ≲ 1.
Funder
National Science Foundation
EC ∣ ERC ∣ HORIZON EUROPE European Research Council
Publisher
American Astronomical Society
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献