USING MACHINE LEARNING ALGORITHMS FOR NATURAL HABITATS ASSESSMENT

Author:

,MARIAN Monica Liliana,NASUI Daniel, ,GHISE Ciprian Radu, ,POPOVICI Flavia, ,SABO Cosmin, ,MARE Rosca Oana, ,MIHALESCU Lucia, ,VASILESCU Bogdan, ,VOSGAN Zorica,

Abstract

The potential of AI to process and interpret large volumes of data can provide researchers with a powerful tool to understand and monitor biodiversity on a global scale. In this paper we aimed to identify dominant individual plant species in natural protected habitats. Mapping the dominant species from the targeted natural habitats was followed by testing machine learning algorithm for differentiating similar species using satellite images. In the end we validated the data generated by machine learning algorithms through extensive field observations. Using the Sentinel-2 mission 10m resolution data and comprehensive field mapping we managed to see different phenology variations between diverse types of plant communities. Using the NDVI and NDII vegetation indexes and Random Forest algorithm during the dominant species phenology stages for each consecutive 10-day periods between May 1st and September 10th, revealed distinct responses to climate fluctuations and environmental factors. The natural habitats different signatures are strongly influenced by their ecological and conservation status and are not yet suitable for identification, but could help improve AI’s automatic detection for multiannual analysis if a favorable conservation trend is reached. The main achievement of the proposed methodology is the ability to differentiate between different species of deciduous trees, with machine learning training accuracy generally exceeding 95% and classification accuracy surpassing 90%.

Publisher

Asociatia Carpatica de Mediu si Stiintele Pamantului

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3