In vitro effect of bioscaffolds on viability and insulin‑producing function of human islets of Langerhans

Author:

Ponomareva A. S.1,Baranova N. V.1,Miloserdov I. A.1,Sevastianov V. I.1

Affiliation:

1. Shumakov National Medical Research Center of Transplantology and Artificial Organs

Abstract

The culture of islets of Langerhans with bioscaffolds – extracellular matrix (ECM) mimetics – can provide a native microenvironment suitable for islets. This is one of the main conditions for creating a pancreatic tissue equivalent.Objective: to compare the secretory capacity of viable human pancreatic islets in monoculture (control group) and cultured in the presence of two bioscaffolds: biopolymer collagen-based hydrogel scaffold (experimental group 1) and tissue-specific scaffold from decellularized deceased donor pancreas (experimental group 2).Materials and methods. Islets of Langerhans were isolated from the caudal pancreas using a collagenase technique. The viability of cultured islets was accessed by vital fluorescence staining, while secretory capacity was evaluated by enzyme-linked immunosorbent assay (ELISA).Results. Pancreatic islets cultured with bioscaffolds showed no signs of degradation and fragmentation, they remained viable throughout the entire period of observation (7 days). The monoculture of islets showed significant destructive changes during this period. Basal insulin levels in experimental groups 1 and 2 increased by 18.8% and 39.5% on day 1 of culture compared to the control group, by 72.8% and 102.7% on day 4 of incubation, and by 146.4% and 174.6% on day 7, respectively. The insulin secretion level of islets with tissue-specific scaffolds was 17.4% higher than that when cultured with biopolymer collagen-based scaffolds.Conclusion. Biopolymer and tissue-specific ECM mimetics contribute not only to preservation of the viability of isolated islets of Langerhans but also maintain their insulin secretion capacity for 7 days at a higher level in comparison with monoculture. The experiments revealed that the use of a tissue-specific scaffold for the creation of a pancreatic tissue equivalent has slight potential advantage over biopolymer scaffold.

Publisher

V.I. Shimakov Federal Research Center of Transplantology and Artificial Organs

Subject

Transplantation,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3