Gaussian Process Regression´s Hyperparameters Optimization to Predict Financial Distress

Author:

Horak JakubORCID,Sabek AmineORCID

Abstract

Predicting financial distress has become one of the most important topics of the hour that has swept the accounting and financial field due to its significant correlation with the development of science and technology. The main objective of this paper is to predict financial distress based on the Gaussian Process Regression (GPR) and then compare the results of this model with the results of other deep learning models (SVM, LR, LD, DT, KNN). The analysis is based on a dataset of 352 companies extracted from the Kaggle database. As for predictors, 83 financial ratios were used. The study concluded that the use of GPR achieves very relevant results. Furthermore, it outperformed the rest of the deep learning models and achieved first place equally with the SVM model with a classification accuracy of 81%. The results contribute to the maintenance of the integrated system and the prosperity of the country’s economy, the prediction of the financial distress of companies and thus the potential prevention of disruption of the given system.

Publisher

Salesian Polytechnic University of Ecuador

Subject

Public Administration,Economics and Econometrics,Strategy and Management,Marketing,Management of Technology and Innovation,Business and International Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3