Multivariate EEG Signal Processing Techniques for the Aid of Severely Disabled People

Author:

Ibrahimy Muhammad I.ORCID,Ibrahimy Ahmad I.

Abstract

Electroencephalography (EEG) has been used for several years as a trace of signals for facilitating subjects with serious infirmities to communicate with computers and other devices. Many studies have revealed the correlation of mental tasks with the EEG signals for actual or fictional movements. However, the performance of Brain Computer Interface (BCI) using EEG signal is still below enough to assist any disabled people. One reason could be that the researchers in this field (motor imagery based BCI) normally use two to three channels of EEG signal. This might limit the performance of BCI, as an extra source of information generally helps in detecting a person's motor movement intentions. Therefore, the proposed research work is involved with three or more channels of EEG signal for online BCI. Two fundamental objectives for BCI based on motor movement imagery from multichannel signals are aimed at in this research work: i) to develop a technique of multivariate feature extraction for motor imagery related to multichannel EEG signals; and ii) to develop an appropriate machine learning based feature classification algorithm for Brain Computer Interface. Nevertheless, all other problems like interfacing and real-time operations with current BCIs are also addressed and attempts are made to reduce the problems. The methodology can be described by following steps as follows: i) at least 3 channels of EEG signal are recorded; ii) a few features are extracted from preprocessed EEG signal; iii) all extracted features are classified to generate commands for BCI; iv) finally evaluate the performance of the proposed algorithm for BCI. The challenge of this research work is to investigate and find an appropriate model for online (real-time) BCI with a realistic performance to be made in achieving better lives for people with severe disabilities in Malaysia and abroad.

Publisher

AlamBiblio Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3