Blue-Light Filtering Monofocal Intraocular Lenses: A Study on Optical Function and Tolerance to Misalignment

Author:

Yan Weijia,Auffarth Gerd U.,Khoramnia Ramin,Łabuz Grzegorz

Abstract

Purpose: To investigate the optical performance and tolerance to misalignment of blue-light filtering monofocal intraocular lenses (IOLs). Methods: The optical properties of two monofocal IOLs featuring yellow chromophores, CT Lucia 621 PY (Carl Zeiss Meditec AG) and Clareon CNA0T0 (Alcon Laboratories, Inc), were assessed in monochromatic and polychromatic light while introducing spherical aberration (SA). Optical quality metrics derived from the modulation transfer function were assessed after optimal IOL centration at 3- and 4.5-mm pupils. In addition, each IOL's tolerance to misalignment was examined by inducing up to 1 mm of decentration and the effect of tilting it by 5 degrees at 3 mm. Results: The IOLs' resolution and contrast, while tested using a 3-mm aperture and an SA-neutral corneal model, indicated the CT Lucia 621 PY had a slightly higher modulation transfer function (MTF) at 50 lp/mm than the CNA0T0 under monochromatic conditions (0.77 vs 0.69). On introducing SA with (0.49 vs 0.40) and without (0.75 vs. 0.70) chromatic aberration, the CT Lucia 621 PY maintained its minimally better performance. When assessed with a 4.5-mm aperture in monochromatic light, the CT Lucia 621 PY displayed improved MTF with aberration-free cornea (0.71 vs 0.40) but performed worse after introducing SA (0.44 vs 0.62). However, both lenses achieved comparable MTF values under spherical and chromatic aberrations (0.28 vs 0.27). The IOL misalignment test revealed a better tolerance to tilt and decentration of the CT Lucia 621 PY across all conditions. Conclusions: The CT Lucia 621 PY and CNA0T0 showed similar optical quality in different situations, with equal simulated distance visual acuity for both models. However, the CT Lucia 621 PY's aspheric design offers an advantage when dealing with often imperfect physiological conditions, displaying a more robust performance under tilt and decentration. [ J Refract Surg . 2024;40(2):e79–e88.]

Publisher

SLACK, Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3