Prediction of Residential Real Estate Selling Prices in Serbia Using Artifical Neural Networks

Author:

Matić Ljiljana,Ranković VesnaORCID,Geroski TijanaORCID,Kalinić ZoranORCID

Abstract

The increasing housing prices over the past decades have added complexity to the real estate appraisal process. Therefore, it is important to create a proper prediction model which can encapsulate complex dependence of the property price from variable inputs. But, the problem of predicting real estate prices is highly non-linear and depends on many parameters. This research explores the potential of utilizing artificial neural networks (ANNs) to forecast the selling prices of apartments in Belgrade, Serbia, based on various apartment parameters. The findings demonstrate high efficiency of the ANN models in property valuation and, if all the preconditions of property value modelling are met, the ANN technique stands as a reliable valuation approach that could be used by both real estate researchers and professionals.

Publisher

University of Maribor Press

Reference18 articles.

1. Modelling property values in Nigeria using artificial neural network;Abidoye;Journal of Property Research,2017

2. Aydemir, E., Aktürk, C., & Yalçınkaya, M. A. (2020). Estimation of Housing Prices with Artificial Intelligence. Turkish Studies, 15(2), 183-194.

3. Borst, R. A. (1991). Artificial neural networks: The next modelling/calibration technology for the assessment community. Property Tax Journal, 10(1), 69-94.

4. Borst, R. A. (1995). Artificial neural networks in mass appraisal. Journal of Property Tax Assessment & Administration, 1(2), 5-15.

5. Çılgın, C., & Gökçen, H. (2023). Machine Learning Methods for Prediction Real Estate Sales Prices in Turkey. Revista de la Construcción. Journal of Construction, 22(1), 163-177. [DOI: 10.7764/RDLC.22.1.163]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3