EXPERIMENTAL AND ANALYTICAL INVESTIGATION OF THE EFFECT OF LAYER NUMBER AND THICKNESS ON THE BENDING PROPERTIES OF GLULAM BEAMS

Author:

ŞİMŞEK TÜRKER Yasemin1ORCID,KILINÇARSLAN Şemsettin1ORCID

Affiliation:

1. Süleyman Demirel Üniversitesi

Abstract

Wooden material is used in structural elements due to its many positive properties. Recent years have witnessed a surge in research directed toward enhancing the mechanical properties of wooden beams through the utilization of materials like steel plates and fiber reinforced polymers (FRP). Layered laminated timber, a composite material crafted from wood, serves as a testament to this endeavor. These laminated timbers constitute intricate engineering elements, fashioned from layers of wood characterized by distinct levels of strength and hardness, systematically arranged as per established guidelines. The present study is geared toward a comprehensive examination of the bending characteristics exhibited by glued beams, fashioned from spruce trees, encompassing six distinct sizes and varying layer counts. The manufacturing process yields beams with diverse cross-sectional profiles, including 3-layer and 7-layer variants. By performing 4-point bending tests of the beams, maximum load carrying capacity, bending strength, and elasticity modulus values were obtained experimentally. In addition to the experimental analyses, numerical models of the produced beams were created using the finite element analysis program, and static analyses were performed. In the experimental results, it was observed that the bending properties of the beams increased as the number and size of layers increased. It was determined that the maximum load carrying capacity, bending strength, and elasticity modulus values obtained as a result of experimental and numerical analysis were very close to each other. Numerical analysis results showed that beams produced with various number of layers and thicknesses can be simulated. It has been determined that the results obtained by creating numerical models instead of experimental analyses for this type of wooden beam may be sufficient.

Publisher

Kahramanmaras Sutcu Imam University Journal of Engineering Sciences

Reference27 articles.

1. Beceren Oztürk, R. and Arioglu, N. (2010). Mechanical properties of laminated wood beams produced from Turkish pinus silvestris. ITU Journal/a, 5(2).

2. Di, J., Zuo, H., and Li, Y. (2022). Flexural performance of glulam strengthened with flax-fiber reinforced polymer composites. Wood Material Science & Engineering, 1-10.

3. Dietsch, P. and Tannert, T. (2015). Assessing the integrity of glued-laminated timber elements, Construction and Building Materials, 101, 1259–1270.

4. Falk, R.H. (2010). Wood as a sustainable building material, in: R.J. Ross (Ed.), Wood handbook-Wood as an engineering material.Centennial Edition, Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI: U.S., p. 1.

5. Fossetti, M., Minafò, G. and Papia, M. (2015). Flexural behaviour of glulam timber beams reinforced with FRP cords. Construction and Building Materials, 95, 54-64.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3