Crop yield and soil fertility as affected by papermill biosolids and liming by-products

Author:

Ziadi Noura1,Gagnon Bernard1,Nyiraneza Judith2

Affiliation:

1. Soils and Crops Research and Development Centre, Agriculture and Agri-Food Canada, 2560 Hochelaga Blvd., Quebec City, Quebec, Canada G1V 2J3

2. Crops and Livestock Research Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, Prince Edward Island, Canada C1A 4N6

Abstract

Ziadi, N., Gagnon, B. and Nyiraneza, J. 2013. Crop yield and soil fertility as affected by papermill biosolids and liming by-products. Can. J. Soil Sci. 93: 319–328. Papermill biosolids (PB) in combination with alkaline industrial residuals could benefit agricultural soils while diverting these biosolids from landfill. A greenhouse study was conducted to evaluate the effect of three types of PB at rates of 0, 30, and 60 wet Mg ha−1, as well as five liming by-products at 3 wet Mg ha−1 along with 30 Mg PB ha−1 on crop yield, nutrient accumulation, and soil properties. De-inking paper biosolids (DB, C/N of 65) were applied to soybean [Glycine max (L.) Merr.], and two combined PB (PB1, C/N of 31; and PB2, C/N of 14) were applied to dry bean (Phaseolus vulgaris L.) and barley (Hordeum vulgare L.), respectively. The liming by-products included lime mud (LM), wood ash (WA) from paper mills, commercial calcitic lime (CL), Mg dissolution by-product (MgD), and Mg smelting and electrolysis work (MgSE). Compared with the control, PB2 increased barley yield and total Mg and Na accumulation, and both PB increased plant N, P, and Ca accumulation in barley and dry bean. The impact of DB on soybean was limited. The addition of liming by-products to PB or DB did not affect crop attributes except the combination with MgSE, which severely reduced the growth of dry bean and, to a lesser extent, soybean. Soil NO3-N was immobilized following DB application, whereas there was a net release with both PB. Combining PB and liming by-products produced the greatest changes in soil properties at harvest. Generally, LM and CL raised pH and Mehlich-3 Ca, and MgSE caused a strong increase in Mehlich-3 Mg and Na and water-soluble Cl. When used with appropriate crops, biosolids from paper mills and alkaline residuals other than MgSE can efficiently enhance soil fertility by providing organic C and macronutrients for balanced crop fertilization.

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3