Affiliation:
1. Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
2. Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
Abstract
Wang, J., Cheung, M., Rasooli, L., Amirsadeghi, S. and Vanlerberghe, G. C. 2014. Plant respiration in a high CO2 world: How will alternative oxidase respond to future atmospheric and climatic conditions? Can. J. Plant Sci. 94: 1091–1101. Plant mitochondria contain an alternative oxidase (AOX) that reduces the energy yield of respiration. While respiration and photosynthesis are known to interact, the role of AOX in the light remains poorly understood. This gap in our understanding of leaf metabolism extends to future conditions of high CO2 and climate change. While studies indicate that AOX respiration is quite responsive to growth conditions, few studies have examined AOX respiration at high CO2 and little is known regarding the combined impact of changes in both CO2 and other climatic factors such as temperature and water availability. Given its non-energy conserving nature, a fundamental response by AOX to these future conditions could impact the net carbon gain that results from the combined processes of photosynthesis and respiration. Here, we show that leaf AOX protein amount in Nicotiana tabacum is dependent upon growth irradiance and CO2 level, that AOX is subject to biochemical control by intermediates of photorespiration, and that photosynthesis is impacted in transgenic plants lacking AOX. We also review findings that tobacco AOX respiration is responsive to climatic variables (temperature, water availability), thus providing an excellent experimental system to investigate the interplay between AOX, photosynthesis at high CO2, and climate change.
Publisher
Canadian Science Publishing
Subject
Horticulture,Plant Science,Agronomy and Crop Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献